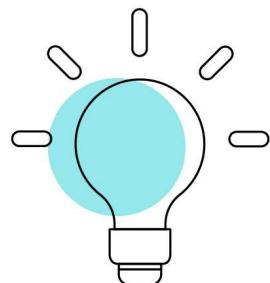


# Topic Test

## Summer 2022


Pearson Edexcel GCE Mathematics (9MA0)

**Paper 1 and Paper 2**

**Topic 10: Vectors**

### Contents

|                                                     |    |
|-----------------------------------------------------|----|
| <u>General guidance to Topic Tests</u> .....        | 3  |
| <u>Revise Revision Guide content coverage</u> ..... | 4  |
| <u>Questions</u> .....                              | 5  |
| <u>Mark Scheme</u> .....                            | 19 |



# Questions

## Question T10\_Q1

2. Relative to a fixed origin  $O$ ,

the point  $A$  has position vector  $(2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$ ,

the point  $B$  has position vector  $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$ ,

and the point  $C$  has position vector  $(a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k})$ , where  $a$  is a constant and  $a < 0$

$D$  is the point such that  $\overrightarrow{AB} = \overrightarrow{BD}$ .

(a) Find the position vector of  $D$ .

(2)

Given  $|\overrightarrow{AC}| = 4$

(b) find the value of  $a$ .

(3)

## Question T10\_Q2

10.

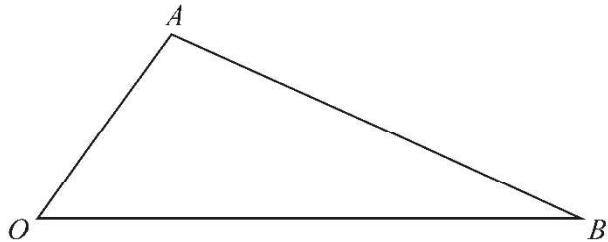



Figure 7

Figure 7 shows a sketch of triangle  $OAB$ .

The point  $C$  is such that  $\overrightarrow{OC} = 2\overrightarrow{OA}$ .

The point  $M$  is the midpoint of  $AB$ .

The straight line through  $C$  and  $M$  cuts  $OB$  at the point  $N$ .

Given  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$

(a) Find  $\overrightarrow{CM}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$  (2)

(b) Show that  $\overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ , where  $\lambda$  is a scalar constant. (2)

(c) Hence prove that  $ON:NB = 2:1$  (2)

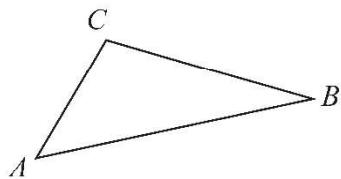
## Question T10\_Q3

### 3. Relative to a fixed origin $O$

- point  $A$  has position vector  $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$
- point  $B$  has position vector  $3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}$
- point  $C$  has position vector  $2\mathbf{i} - 16\mathbf{j} + 4\mathbf{k}$

(a) Find  $\vec{AB}$

(2)


(b) Show that quadrilateral  $OABC$  is a trapezium, giving reasons for your answer.

(2)

**Question 6 continued**

## Question T10\_Q5

6.



**Figure 1**

Figure 1 shows a sketch of triangle  $ABC$ .

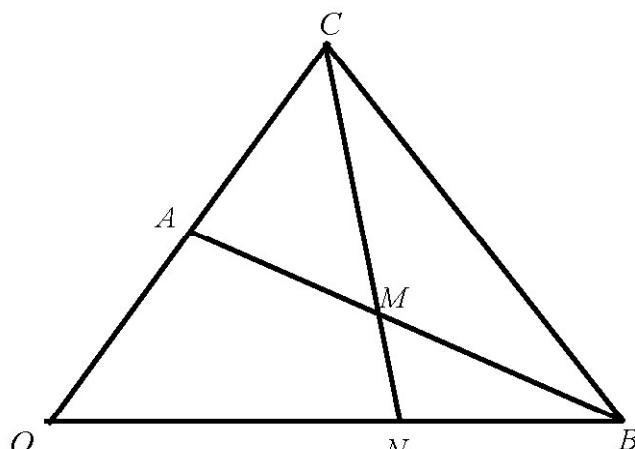
Given that

- $\overrightarrow{AB} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}$
- $\overrightarrow{BC} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$

(a) find  $\overrightarrow{AC}$  (2)

(b) show that  $\cos ABC = \frac{9}{10}$  (3)

# Mark Scheme


## Question T10\_Q1

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks | AOs       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 2        | $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ , $\overrightarrow{OB} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ , $\overrightarrow{OC} = a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ , $a < 0$<br>$\overrightarrow{AB} = \overrightarrow{BD}$ , $ \overrightarrow{AB}  = 4$                                                                                                                                                                                                                                                                                               |       |           |
| (a)      | E.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB}$<br>or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OB} - \overrightarrow{OA}$<br>or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AB}$ |       |           |
|          | $= \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \quad \left\{ = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$<br>or $= \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \left( \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \right) \quad \left\{ = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$                                             | M1    | 3.1a      |
|          | $= \begin{pmatrix} 6 \\ -7 \\ 10 \end{pmatrix} \quad \text{or} \quad 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1    | 1.1b      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | (2)       |
|          | $(a-2)^2 + (5-3)^2 + (-2-4)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1    | 1.1b      |
| (b)      | $\left\{  \overrightarrow{AC}  = 4 \Rightarrow \right\} (a-2)^2 + (5-3)^2 + (-2-4)^2 = (4)^2$<br>$\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots$ or $\Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$                                                                                                                                                                                                                                                                                                                                                                                 | dM1   | 2.1       |
|          | (as $a < 0 \Rightarrow a = 2 - 2\sqrt{2}$ (or $a = 2 - \sqrt{8}$ ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1    | 1.1b      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | (3)       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | (5 marks) |

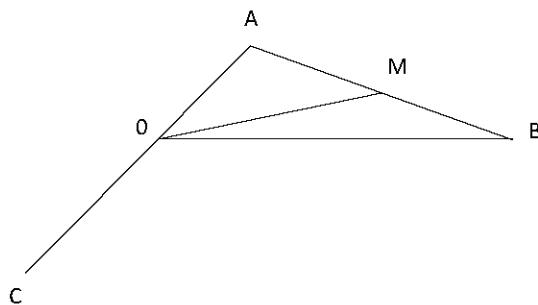
### Notes for Question 2

|       |                                                                                                                                                                                                                                                                                                                                      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)   |                                                                                                                                                                                                                                                                                                                                      |
| M1:   | Complete <i>applied</i> strategy to find a vector expression for $\overrightarrow{OD}$                                                                                                                                                                                                                                               |
| A1:   | See scheme                                                                                                                                                                                                                                                                                                                           |
| Note: | Give M0 for subtracting the wrong way wrong to give e.g.<br>$(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$ |
| Note: | Writing e.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AB}$ or $\overrightarrow{OD} = 2\overrightarrow{OB} - \overrightarrow{OA}$ with no other work is M0                                                                                                                                                        |
| Note: | Finding <i>coordinates</i> , i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0                                                                                                                                                                                                                              |
| Note: | Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working                                                                                                                                                                                                                                               |
| Note: | M1 can be implied for at least two correct components in their position vector of $D$                                                                                                                                                                                                                                                |
| (b)   |                                                                                                                                                                                                                                                                                                                                      |
| M1:   | Finds the difference between $\overrightarrow{OA}$ and $\overrightarrow{OC}$ , then squares and adds each of the 3 components<br>Note: Ignore labelling                                                                                                                                                                              |
| dM1:  | Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overrightarrow{AC}  = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a = \dots$                                                                                                                         |
| Note: | Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark                                                                                                                                                                                                                                                                |
| A1:   | Obtains <b>only one</b> exact value, $a = 2 - 2\sqrt{2}$                                                                                                                                                                                                                                                                             |
| Note: | Writing $a = 2 \pm 2\sqrt{2}$ , without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0                                                                                                                                                                                                                                              |
| Note: | Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied                                                                                                                                                                                                                          |
| Note: | Writing $a = -0.828\dots$ , without reference to a correct exact value is A0                                                                                                                                                                                                                                                         |

## Question T10\_Q2

| Question     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks | AOs       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |
|              | $\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |
| (a)          | $\left\{ \overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = \overrightarrow{CA} + \frac{1}{2} \overrightarrow{AB} \Rightarrow \right\} \overrightarrow{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ $\left\{ \overrightarrow{CM} = \overrightarrow{CB} + \overrightarrow{BM} = \overrightarrow{CB} + \frac{1}{2} \overrightarrow{BA} \Rightarrow \right\} \overrightarrow{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ $\Rightarrow \overrightarrow{CM} = -\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$ (needs to be simplified and seen in (a) only) | M1    | 3.1a      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1    | 1.1b      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | (2)       |
| (b)          | $\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{CN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OC} + \lambda \overrightarrow{CM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1    | 1.1b      |
|              | $\overrightarrow{ON} = 2\mathbf{a} + \lambda \left( -\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \Rightarrow \overrightarrow{ON} = \left( 2 - \frac{3}{2}\lambda \right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$ *                                                                                                                                                                                                                                                                                                                                                                                 | A1*   | 2.1       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | (2)       |
| (c)<br>Way 1 | $\left( 2 - \frac{3}{2}\lambda \right) = 0 \Rightarrow \lambda = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1    | 2.2a      |
|              | $\lambda = \frac{4}{3} \Rightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow \overrightarrow{ON} : \overrightarrow{NB} = 2 : 1$ *                                                                                                                                                                                                                                                                                                                                                                                         | A1*   | 2.1       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | (2)       |
| (c)<br>Way 2 | $\overrightarrow{ON} = \mu \mathbf{b} \Rightarrow \left( 2 - \frac{3}{2}\lambda \right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b} = \mu \mathbf{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |
|              | $\mathbf{a}: \left( 2 - \frac{3}{2}\lambda \right) = 0 \Rightarrow \lambda = \dots \quad \mathbf{b}: \frac{1}{2}\lambda = \mu \quad \& \quad \lambda = \frac{4}{3} \Rightarrow \mu = \frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                | M1    | 2.2a      |
|              | $\lambda = \frac{4}{3} \text{ or } \mu = \frac{2}{3} \Rightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow \overrightarrow{ON} : \overrightarrow{NB} = 2 : 1$ *                                                                                                                                                                                                                                                                                                                                                           | A1*   | 2.1       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | (2)       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | (6 marks) |

| Question        | Scheme                                                                                                                                                                                                           | Marks | AOs  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 10 (c)<br>Way 3 | $\vec{OB} = \vec{ON} + \vec{NB} \Rightarrow \mathbf{b} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} + K\mathbf{b}$                                                             |       |      |
|                 | $\mathbf{a}: \left(2 - \frac{3}{2}\lambda\right) = 0 \Rightarrow \lambda = \dots \quad \left\{ \mathbf{b}: 1 = \frac{1}{2}\lambda + K \quad \& \quad \lambda = \frac{4}{3} \Rightarrow K = \frac{1}{3} \right\}$ | M1    | 2.2a |
|                 | $\lambda = \frac{4}{3}$ or $K = \frac{1}{3} \Rightarrow \vec{ON} = \frac{2}{3}\mathbf{b}$ or $\vec{NB} = \frac{1}{3}\mathbf{b} \Rightarrow \vec{ON} : \vec{NB} = 2:1 *$                                          | A1    | 2.1  |
|                 |                                                                                                                                                                                                                  |       | (2)  |
| 10 (c)<br>Way 4 | $\vec{ON} = \mu\mathbf{b} \quad \& \quad \vec{CN} = k\vec{CM} \Rightarrow \vec{CO} + \vec{ON} = k\vec{CM}$                                                                                                       |       |      |
|                 | $-2\mathbf{a} + \mu\mathbf{b} = k\left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right)$                                                                                                                    |       |      |
|                 | $\mathbf{a}: -2 = -\frac{3}{2}k \Rightarrow k = \frac{4}{3}, \quad \mathbf{b}: \mu = \frac{1}{2}k \Rightarrow \mu = \frac{1}{2}\left(\frac{4}{3}\right) = \dots$                                                 | M1    | 2.2a |
|                 | $\mu = \frac{2}{3} \Rightarrow \vec{ON} = \frac{2}{3}\mathbf{b} \quad \left\{ \Rightarrow \vec{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow \vec{ON} : \vec{NB} = 2:1 *$                                     | A1    | 2.1  |
|                 |                                                                                                                                                                                                                  |       | (2)  |


### Notes for Question 10

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M1:   | Valid attempt to find $\vec{CM}$ using a combination of known vectors $\mathbf{a}$ and $\mathbf{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A1:   | A simplified correct answer for $\vec{CM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Note: | Give M1 for $\vec{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\vec{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$<br>or for $\left\{ \vec{CM} = \vec{OM} - \vec{OC} \Rightarrow \right\} \vec{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.                                                                                                                                                                                                                                                                                                                                                                                                     |
| (b)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M1:   | Uses $\vec{ON} = \vec{OC} + \lambda\vec{CM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A1*:  | Correct proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Note: | <u>Special Case</u><br>Give SC M1 A0 for the solution $\vec{ON} = \vec{OA} + \vec{AM} + \vec{MN} \Rightarrow \vec{ON} = \vec{OA} + \vec{AM} + \lambda\vec{CM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Note: | $\vec{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda\left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) \quad \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\mathbf{b}\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Note: | <u>Alternative 1:</u><br>Give M1 A1 for the following alternative solution:<br>$\vec{ON} = \vec{OA} + \vec{AM} + \vec{MN} \Rightarrow \vec{ON} = \vec{OA} + \vec{AM} + \mu\vec{CM}$<br>$\vec{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu\left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$<br>$\mu = \lambda - 1 \Rightarrow \vec{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \vec{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$ |
| (c)   | Way 1, Way 2 and Way 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M1:   | Deduces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A1*:  | Correct proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (c)   | Way 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1:   | Complete attempt to find the value of $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A1*:  | Correct proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

**Notes for Question 10 Continued**

Note: Part (b) and part (c) can be marked together.

**(a) Special Case** Special Case where the point  $C$  is believed to be below the origin  $O$



Give Special Case M1 A0 in part (a) for  $\{ \vec{CM} = \vec{CA} + \vec{AM} \Rightarrow \} \vec{CM} = 3\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$

$\{ \text{which leads to } \vec{CM} = \frac{5}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \}$

## Question T10\_Q3

| Question  | Scheme                                                                                             | Marks | AOs  |
|-----------|----------------------------------------------------------------------------------------------------|-------|------|
| 3 (a)     | $\vec{AB} = (3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}) - (2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k})$ | M1    | 1.1b |
|           | $= \mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$                                                         | A1    | 1.1b |
|           |                                                                                                    | (2)   |      |
| (b)       | States $\vec{OC} = 2 \times \vec{AB}$                                                              | M1    | 1.1b |
|           | Explains that as $OC$ is parallel to $AB$ , so $OABC$ is a trapezium.                              | A1    | 2.4  |
|           |                                                                                                    | (2)   |      |
| (4 marks) |                                                                                                    |       |      |
| Notes:    |                                                                                                    |       |      |

(a)

**M1:** Attempts to subtract either way around. If no method is seen it is implied by two of  $\pm 1\mathbf{i} \pm 8\mathbf{j} \pm 2\mathbf{k}$ .

**A1:**  $\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$  or  $\begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$  but not  $(1, -8, 2)$

(b)

**M1:** Compares their  $\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$  with  $2\mathbf{i} - 16\mathbf{j} + 4\mathbf{k}$  by stating **any one of**

- $\vec{OC} = 2 \times \vec{AB}$
- $\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$
- $\vec{OC} = \lambda \times \vec{AB}$  or vice versa

This may be awarded if  $AB$  was subtracted "the wrong way around" or if there was one numerical slip

**A1:** A full explanation as to why  $OABC$  is a trapezium.

Requires fully correct calculations, so part (a) must be  $\vec{AB} = (\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$

It requires a reason and minimal conclusion.

Example 1:

$\vec{OC} = 2 \times \vec{AB}$ , therefore  $OC$  is parallel to  $AB$  so  $OABC$  is a trapezium

Example 2:

A trapezium has one pair of parallel sides. As  $\vec{OC} = 2 \times \vec{AB}$ , they are parallel, so ✓.

Example 3

As  $\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$ ,  $OC$  and  $AB$  are parallel, so proven

Example 4

Accept as  $\vec{OC} = \lambda \times \vec{AB}$ , they are parallel so true

Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with **only one** pair of parallel sides. Any calculations to do with sides  $OA$  and  $CB$  in this question may be ignored, even if incorrect.

## Question T10\_Q4

| Question Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | AO's |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| 2               | Attempts any one of<br>$(\pm \overrightarrow{PQ} =) \pm (\mathbf{q} - \mathbf{p})$ , $(\pm \overrightarrow{PR} =) \pm (\mathbf{r} - \mathbf{p})$ , $(\pm \overrightarrow{QR} =) \pm (\mathbf{r} - \mathbf{q})$<br>Or e.g.<br>$(\pm \overrightarrow{PQ} =) \pm (\overrightarrow{OQ} - \overrightarrow{OP})$ , $(\pm \overrightarrow{PR} =) \pm (\overrightarrow{OR} - \overrightarrow{OP})$ , $(\pm \overrightarrow{QR} =) \pm (\overrightarrow{OR} - \overrightarrow{OQ})$ | M1    | 1.1b |
|                 | Attempts e.g.<br>$\mathbf{r} - \mathbf{q} = 2(\mathbf{q} - \mathbf{p})$<br>$\mathbf{r} - \mathbf{p} = 3(\mathbf{q} - \mathbf{p})$<br>$\frac{2}{3}(\mathbf{q} - \mathbf{p}) = \frac{1}{3}(\mathbf{r} - \mathbf{q})$<br>$\mathbf{q} = \mathbf{p} + \frac{1}{3}(\mathbf{r} - \mathbf{p})$<br>$\mathbf{q} = \mathbf{r} + \frac{2}{3}(\mathbf{p} - \mathbf{r})$                                                                                                                 | dM1   | 3.1a |
|                 | E.g.<br>$\Rightarrow \mathbf{r} - \mathbf{q} = 2\mathbf{q} - 2\mathbf{p} \Rightarrow 2\mathbf{p} + \mathbf{r} = 3\mathbf{q} \Rightarrow \mathbf{q} = \frac{1}{3}(\mathbf{r} + 2\mathbf{p})^*$                                                                                                                                                                                                                                                                              | A1*   | 2.1  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3)   |      |
| (3 marks)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |

### Notes:

**M1:** Attempts any of the relevant vectors by subtracting either way around. This may be implied by sight of any one of  $\pm(\mathbf{q} - \mathbf{p})$ ,  $\pm(\mathbf{r} - \mathbf{p})$ ,  $\pm(\mathbf{r} - \mathbf{q})$  ignoring how they are labelled

**dM1:** Uses the given information and writes it correctly in vector form that if rearranged would give the printed answer

**A1\*:** Fully correct work leading to the given answer. Allow  $OQ = \dots$  as long as  $OQ$  has been defined as  $\mathbf{q}$  earlier.

In the working allow use of  $P$  instead of  $\mathbf{p}$  and  $Q$  instead of  $\mathbf{q}$  as long as the intention is clear.

## Question T10\_Q5

| Question     | Scheme                                                                                                                                                                            | Marks     | AOs  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| 6(a)         | $\vec{AC} = \vec{AB} + \vec{BC} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k} + \mathbf{i} + \mathbf{j} + 4\mathbf{k} = \dots$                                                       | M1        | 1.1b |
|              | $= -2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$                                                                                                                                       | A1        | 1.1b |
|              |                                                                                                                                                                                   | (2)       |      |
| (b)          | At least 2 of<br>$(AC^2) = "2^2 + 3^2 + 1^2", (AB^2) = 3^2 + 4^2 + 5^2, (BC^2) = 1^2 + 1^2 + 4^2$                                                                                 | M1        | 1.1b |
|              | $2^2 + 3^2 + 1^2 = 3^2 + 4^2 + 5^2 + 1^2 + 1^2 + 4^2 - 2\sqrt{3^2 + 4^2 + 5^2} \sqrt{1^2 + 1^2 + 4^2} \cos ABC$                                                                   | M1        | 3.1a |
|              | $14 = 50 + 18 - 2\sqrt{50} \sqrt{18} \cos ABC$<br>$\Rightarrow \cos ABC = \frac{50 + 18 - 14}{2\sqrt{50} \sqrt{18}} = \frac{9}{10} *$                                             | A1*       | 2.1  |
|              |                                                                                                                                                                                   | (3)       |      |
|              | <b>(b) Alternative</b><br>$AB^2 = 3^2 + 4^2 + 5^2, BC^2 = 1^2 + 1^2 + 4^2$                                                                                                        | M1        | 1.1b |
|              | $\vec{BA} \cdot \vec{BC} = (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + 4\mathbf{k}) = 27 = \sqrt{3^2 + 4^2 + 5^2} \sqrt{1^2 + 1^2 + 4^2} \cos ABC$ | M1        | 3.1a |
|              | $27 = \sqrt{50} \sqrt{18} \cos ABC \Rightarrow \cos ABC = \frac{27}{\sqrt{50} \sqrt{18}} = \frac{9}{10} *$                                                                        | A1*       | 2.1  |
|              |                                                                                                                                                                                   | (5 marks) |      |
| <b>Notes</b> |                                                                                                                                                                                   |           |      |

(a)

M1: Attempts  $\vec{AC} = \vec{AB} + \vec{BC}$

There must be attempt to add not subtract.

If no method shown it may be implied by **two** correct components

A1: Correct vector. Allow  $-2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$  and  $\begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$  but not  $\begin{pmatrix} -2\mathbf{i} \\ -3\mathbf{j} \\ -1\mathbf{k} \end{pmatrix}$

(b)

M1: Attempts to "square and add" for at least 2 of the 3 sides. Follow through on their  $\vec{AC}$

Look for an attempt at either  $a^2 + b^2 + c^2$  or  $\sqrt{a^2 + b^2 + c^2}$

M1: A correct attempt to apply a correct cosine rule to the given problem; Condone **slips** on the lengths of the sides but the sides must be in the correct position to find angle  $ABC$

A1\*: Correct completion with sufficient intermediate work to establish the printed result.

Condone different labelling, e.g.  $ABC \leftrightarrow \theta$  as long as it is clear what is meant

It is OK to move from a correct cosine rule  $14 = 50 + 18 - 2\sqrt{50} \sqrt{18} \cos ABC$

via  $\cos ABC = \frac{54}{2\sqrt{50} \sqrt{18}}$  o.e. such as  $\cos ABC = \frac{(5\sqrt{2})^2 + (3\sqrt{2})^2 - (\sqrt{14})^2}{2 \times 5\sqrt{2} \times 3\sqrt{2}}$  to  $\cos ABC = \frac{9}{10}$

**Alternative:**

M1: Correct application of Pythagoras for sides  $AB$  and  $BC$  or their squares

M1: Recognises the requirement for and applies the scalar product

A1\*: Correct completion with sufficient intermediate work to establish the printed result